

MAKING CONSTRUCTION EASIER

A Non Corrosive Alternative in Concrete Reinforcement

Historical context	
Worldwide applications	5
FRP bar	8
Applications and Standards	10
Advantages	15
Save money with GFRP advantages	16
Examples of practical implementation	18

Historical context

Composites' Development

- **1940s** First structural applications of modern composites in naval and aerospace industries
- 1950s Introduction of composites in automotive and oil industries
- **1960s** Development of advanced composites (defence industries) and first applications in construction industry

1970-1990s:

Technological development of manufacturing processes Requirement of increasing construction speed Demand for electrically nonconductive material (MRI medical equipment)

Up to mid-1990s the Japanese had the most FRP reinforcement applications

In the 2000s China became the largest user of composites with their applications from bridge decks to underground works

Current leaders in composite use - USA and Canada

5

Worldwide applications

Samples of world applications:

- Potter County Bridge and Bettendorf Bridge (USA)
- National Institute of Health (Betesda, USA)
- Manitoba Bridge, Saint-Francois Bridge (Canada)
- Hospital in Isedzaki City (Guama Prefecture, Japan)
- Underground subway in Fuxing and railway stations in Yishan, Shanghai (China)
- Railway tunnel under the Thames river (London, England)
- Runway strip at Zurich airport (Switzerland)

Worldwide applications

Types of fiber reinforced polymer bars:

- Glass fiber reinforced polymer bar (GFRP)
- Basalt fiber reinforced polymer bar (BFRP)
- Carbon fiber reinforced polymer bar (CFRP)
- Aramid fiber reinforced polymer bar (AFRP)

Advantages of GFRP:

- Transparent to magnetic fields, radio frequencies
- Thermally and electrically nonconductive

FRP bar

GLASS FIBER REINFORCED POLYMER (GFRP) BARS ARE PROUDLY MADE IN GHANA

USING LATEST TECHNOLOGIES AND BEST WORLD PRACTICES AND RECOMMENDATIONS OF AMERICAN CONCRETE INSTITUTION (ACI) AND ASTM STANDARDS. Standards approved by GHANA STANDARDS AUTHORITY

VIVA FIBERGLASS REBAR IS AN ALTERNATIVE TO CONVENTIONAL STEEL REBAR

BUT WITH

Corrosion resistance Strength Impact resistance

Maintenance Weight Concrete layer

ALL CONCRETE FUNDATIONS

SPECIALIZED CONCRETE CONSTRUCTION

MINING AND TUNNELING

MARINE APPLICATIONS

CHEMICAL ENGENEERING

Applications and Standards

Viva Fiberglass Reinforcement is produced in accordance with best world practice and recommendations of **American Concrete Institution** standards.

Quality is controlled by **Ghana Standards Authority** and confirmed by **Bureau Veritas**. Respective quality certificates are prepared for each batch.

We are pleased to make quality changes in construction industry of West Africa and be first of a kind in delivering revolution technology to West African communities.

American Concrete Institute Always advancing

Technical Committee

The National Technical Committee on Building and Construction (TC 11) was reconstituted as follows:

.....

NO	NAME	ORGANIZATION	POSITION	E-MAIL / TEL NO.
1	Ing. Seth Bright Attipoe-Denyah	Consultant	Chairman	Sethbad93@yahoo.com / 0244 666196
2	Mr. Nana Ansah Benyi	ISADA	Member	nbenyi@yahoo.co.uk / 0264 464449
3	Ing. Kweku Nyarko Twumasi	Ghana Institution of Engineers	Member	twumasi@hotmail.com / 0208 133933 / 0235 133933
4	Mr. Mawuli Tsaku	GSA, Testing	Member	mtsaku@yahoo.co.uk / 0208 156861
5	Ing. Mike Addo	Structural Tekniks	Member	moeataddo@gmail.com / 0244 674 515 / 0205 663 577
6	Mr. Matrevi Enyo Koku	Ghana Highway authority	Member	enyomatrevi@gmail.com / 0244 377420
7	Mrs. Adelaide Aikins	GSA, Testing	Member	teimlel@yahoo.com / 0244 612040
8	Ing. Charles N. Adigvom	VIVA / AESL	Member	adigvom1967@yahoo.com / 0243 613742
9	Ing. Joseph Oddei	VIVA / AESL	Member	joddei@yahoo.com / 0244 726164
10	Prof. Samuel Kwofie	Dept. of Metallurgy, KNUST, Kumasi	Member	drskwofie59@yahoo.com / 0548 002384
11	Mr. Kofi Nagetey	GSA	Member	fnagetey@gsa.gov.gh
12	Mr. K.O. Boadu	GSA	Member	kboadu@gsa.gov.gh
13	Adelaide D. Appiah (Ms)	GSA	Member	adda1m@yahoo.co.uk / 0266 101427
14	Mr. William Nimako	GSA	Member/Sec.	wnimako@yahoo.com / 0208 972246

Applications and Standards

American Concrete Institution

- **440.1R-15:** Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars
- **440.5-08:** Specification for Construction with Fiber-Reinforced Polymer Reinforcing Bars
- **440.6-08:** Specification for Carbon and Glass Fiber-Reinforced Polymer Bar Materials for Concrete Reinforcement
- 440.3R-12: Guide Test Methods for Fiber-Reinforced Polymer (FRP) Composites for Reinforcing or Strengthening Concrete Masonry Structures
- 440.2R-08: Guide for the Design and Construction of Externally Bonded FRP Systems or Strengthening Concrete Structures
- 440.7R-10: Guide for the Design and Construction of Externally Bonded Fiber- Reinforced Polymer Systems for Strengthening Unreinforced Masonry Structures American Association of State Highway & Transportation Officials
- AASHTO GFRP-1: AASHTO LRFD Bridge Design Guide Specifications for GFRP- Reinforced Concrete Bridge Decks and Traffic Railing

Advantages

- Impervious to chloride ion, low pH chemical attack and bacteriological growth
- Non-existent corrosion, rust free
- Non Toxic
- 80+ years of lifespan and corrosion resistance

- Cost effective vs traditional iron rods in West Africa
- Maintenance free
- Easily cut and machined
- Easy and
- Rapid Installation

- 7 x lighter in weight than the equivalent strength of steel rebar
- Less rebar diameter
- Less handling
- Less load on basement

- High Fatigue endurance and Impact Resistance
- Up to 2 x tensile strength of steel

16

Save money with GFRP advantages

Direct savings on material 37,89%

1 ton of 8 mm high tensile (ultimate tensile strange 20,1 kN) steel has 2,531 meters and costs 855 USD Same meters of 6 mm GFRP (ultimate tensile strength 21,4 kN) costs 531 USD

Savings - 324 USD per 1 ton*

Save up to 5% without overlaps

Standart overlap is 40 sizes of the diameter or 0,32 m for 8 mm steel

One coil of GFRP 6 mm has 150 meters.

Standart length of 1 steel rebar is 11,8 meters which means that on 150 meters there will be 12 overlaps or 7,68 meters of waists (0,32*2*12)

This will give us 129,6 meters of overlaps on 1 ton of steel (7,68*(2,531/150))

Thus when you avoid overlaps with GFRP you are additionally

Saving 43,8 USD per 1 ton

Additional savings with GFRP

Transportation

1 truck can take 20 tons of steel reinforcement or 50,620 meters (8 mm)

Same truck by weight will take 277,778 meters of GFRP 6 mm which is equivalent to 109,8 tons of 8 mm steel

Therefore you may save 88% percent of your transportation expenses with GFRP

Overall project speed up

Since GFRP bars are lighter and can be coiled, it takes less time to transport them to the top floors (for multistorey constructions) and lay them on the site, which will allow to economize money by paying less amounts to workers and complete the project faster.

For a three successful years of practical implementation in West African sub-region, Viva has participated in more then 1000 projects in areas of industrial, road, real estate and other construction.

We are grateful to all our clients for their choice of innovative, modern and 'green' material that will serve its purpose on a one side and save money on the another.

Below you can find pictures of some of the projects where GFRP bars were applied in the Republic of Ghana.

We hope to see you as our future client!

Construction of Sports centre at 6 Garrison at Tamale for the Ghana Armed Forces

Consultant: Eng. John Ankrah (SRC Engineers)

Construction of a church, Madina, Greater Accra

Consultant: Project and estate department of church of pentecost

Construction of Fertilizer Factory, Tema Industrial Area, Tema Consultant: Eng. John Ankrah (SRC Engineers)

Beach hotel project, Axim area, Western Region

Consultant: Eng. Philip K.Yeboah (Ndede Construction company LTD)

Construction of Ecoblock office building, Pokuase, Accra-Kumasi road

Consultant: Eng. Kwabena Bempong

.....

Construction of Palace mall, Atomic Junction, Aburi road Consultant: Eng. Solomon Oguah (ABP Consult)

Swimming pool for Ghana Armed Forces (GFA) (NAVAL HEADQUARTERS) at ENC – Tema

Consultant: Eng. Asamoah

Pokuase Interchange Project, Accra-Kumasi Road

Consultant: Eng. Kwabena Bempong (Associated Consultants)

Example of practical implementation of Viva Fiberglass reinforcement in Cote d'Ivoire

.....

MPS JETTY REPAIRS, TEMA PORT Contractor: De Simone Group

Atomic Police Campus Contractor: De Simone Group

.....

.....

Beach Resort Project Sakumono, Accra

Factory Project Tema Industrial Area

.....

Oyarifa Park by Indigo Homes Consultant: Associated Consultants

GNPC Research and Technology Centre of GNPC (Accra, Ghana)

Consultant: CONPRO LTD / BI-ARCHITECT CONSULT Contractor: CONSAR LTD

Construction of an Art Center at Community 25, Tema Contractor: Atlantic contract works ltd

Construction of gated community realestate project at Community 27, Tema Contractor: Nyame Dua Homes LTD

REBEACON HEIGHTS business center (Accra, Ghana) Consultant: Ing. Solomon Oguah Location: HAATSO

Community 25 business center (Tema, Ghana) Consultant: AKADAMS CONSTRUCTION LTD AND ARCHITECTURAL BUILDING PLANNER

Typical residential 2-floor building (Accra, Ghana)

2-floor commersial building (Kara, Togo)

FIBERGLASS REINFORCEMENT

Contact us for any assistance you may need for use of GFRP bars:

You are also invited to visit our website:

www.vivafiberglass.com

Look for VIVA Fiberglass Reinforcement on Facebook and LinkedIn